Task 3.1: Powder Sample

1. Use a 'user wavelength distribution file' from a previous task to create a source of 1 cm diameter and bring neutrons of $1.99-2.01 \AA$ to a spot of 2×2 cm^{2} in a distance of 4 m
2. Add a cylindrical sample_powder (sample: NAC) of 1 cm diameter and 2 cm height in 2 cm distance. \quad Edititac _2pow -I口| \times
3. Add 'mon2_div' to visualize Bragg rings

Remove neutrons that are not scattered
\square sample_powder module 2

Sample
 sample
geometry cylinder -

Scattering
total scat-
0.2755

Task 3.1: Detector

1. Add a cylindrical detector of 1 m height and 2 m radius all around the sample
2. Add 'eval_elast' to see intensity as a function of scattering angle and to determine d-spacings

Task 3.2: Background by Sample Environment

1. Add a concentric aluminum cylinder of 7 cm diameter and 0.2 mm (Alu_cont.env) thickness around the sample using twice the module 'sample_environment', now transmitted neutrons must be treated as well
2. Estimate the background by

- coloring neutrons and
- checking the log file and/or separating the contributions using eval_elast
(some trajectories are not treated properly, bug will be fixed i the next version)

thickness [cm] 0.02 diameter [cm] 7.0 Browse Browsen
 Scattering

Task 3: Sample + Detector

Task 3.2: Radial Collimator

1. If you like: add a radial collimator around the aluminum cylinder and check the reduction of background

Task 3.2: Eval_elast

$$
\begin{aligned}
& \text { parameter: } \\
& \text { scattering angle } \\
& \text { d-spacing } \\
& \text { Q } \\
& \hline
\end{aligned}
$$

Task 3: Sample + Detector

