Ex. 1: Basics, Source, Monitors, Guides, continued

1.2-4, curved, ballistic, elliptic and parabolic guides

essworkshop.org

Ex. 1 / Peter Willendrup

tirsdag den 18. maj 2010

1.2: Curved guide:

Open the instrumentfile Ex_1_2.instr given to you

Study the instrumentfile, notice use of the PREVIOUS keyword

Notice input parameters of guide m-value, angular rotation of guide segments

Question: What is the relevant rotation angle to achieve a guide curvature of 1 km?

Try performing a TRACE

Try varying the guide curvature, notice effect on divergence and beam profile

Other curved guides: Use McDoc -> Component Library Index to look at Guide_curved plus Bender from the McStas lib

Ex. 1 / Peter Willendrup

tirsdag den 18. maj 2010

Ven 2010 essworkshop.org

1.3 Ballistic Guides

Goal : transport/focus more neutrons at the sample position

Disadvantage: increasing neutron divergence

Simulation: using standard guide component

1.3: Ballistic guide:

Open the instrumentfile Ex_1_3.instr given to you

Study the instrumentfile, notice use of the DECLARE and INITIALIZE sections

essworkshop.or

Risø DTU

Notice the use of Source_gen to describe the PSI cold source

Notice the input parameter sa_pos, to vary the guide - sample position distance.

Compile and TRACE to have an overview of the instrument.

Run a simulation and notice the wavelength distr. before and after guide.

Task: Scan sa_pos between 0 and 1 m in 11 steps. Notice the effect on beam profiles and divergence.

Ex. 1 / Peter Willendrup

tirsdag den 18. maj 2010

1.4 Elliptic / parabolic Guides

Guide_tapering Component

Parameters for the parabolic (a) and elliptic (b) focusing guide in x-plane

COMPONENT cguide = Guide_tapering (w1 = 0.035, h1 = 0.012, linw = 0, loutw = 0.3, l=1.0, linh=0, louth = 0.3, option="parabolical", R0 = 0.995, Qcx = 0.0217, Qcy = 0.0217, alphax = 4.954, alphay = 4.954, W = 0.003, mx = 3, my = 3, segno = 20) AT (0,0,1.5) RELATIVE arm1 ROTATED (0,0,0) RELATIVE arm1

COMPONENT cguide = Guide_tapering (w1 = 0.035, h1 = 0.012, linw = 0.3, loutw = 0.3, l=10.0, linh=0.3, louth = 0.3, option="elliptical", R0 = 0.995, Qcx = 0.0217, Qcy = 0.0217, alphax = 4.954, alphay = 4.954, W = 0.003, mx = 3, my = 3, segno = 100) AT (0.0,1.5) RELATIVE arm1 ROTATED (0.00) RELATIVE arm1

COMPONENT cguide = Guide_tapering (w1 = 0.035, h1 = 0.012, linw = 0.3, loutw = 0.3, l=10.0, linh=0.3, louth = 0.3, option="file=input.dat", R0 = 0.995, Qcx = 0.0217, Qcy = 0.0217, alphax = 4.954, alphay = 4.954, W = 0.003, mx = 3, my = 3, segno = 100) AT (0,0,1.5) RELATIVE arm1 ROTATED (0,0,0) RELATIVE arm1 1.4: Elliptic guide:

Open the instrumentfile Ex_1_4.instr given to you

Notice the smaller moderator surface, for optimal use of the elliptic guide

essworkshop.or

Risø DTU

Notice the extra input parameter fp, for definition of the guide exit focal point.

Compile and TRACE to have an overview of the instrument.

Run a simulation and notice the wavelength distr. before and after guide. Compare with ballistic guide.

Task: At sa_pos fixed at 0.5 m, vary fp between 0 and 1 m in 11 steps. Notice the effect on beam profiles and divergence. Compare with parabolic guide (Ex_1_4a.instr).

Ex. 1 / Peter Willendrup

tirsdag den 18. maj 2010