Ex. 1: Basics, Source, Monitors, Guides

1.1: mcgui, editor, Source_simple, Guide, Monitors

Starting mcgui
Start a terminal (OS dependent)
cd to a dir of choice
Issue the mcgui command

Press Edit/New to create a new file
On emerging window, choose Insert - Instrument template Choose File - Save As - Ex01.instr

Scroll to TRACE section and insert cursor after the Origin comp Chose Insert - Source - Source_simple

Scroll to TRACE section and insert cursor after the Origin comp Chose Insert - Source - Source_simple

Ex. 1 / Peter Willendrup

Name the component Source
Choose parameters: radius $=0.12$, Lambda $0=5.5$, dLambda $=4.5$, dist $=1.5, \mathrm{xw}=0.06$, yh=0.06
Place the comp at $(0,0,0)$ RELATIVE Origin

Significance of Source_simple parameters

Significance of Source_simple parameters

Insert Optics - Guide - of dimension $0.06 \times 0.06 \mathrm{~m}$, length 20 m , 1.5 meters along z after Source. Use an m value of ' M '. Name the component.

Significance of Guide input parms

Figure 5.1: A typical reflectivity curve for a supermirror, Eq. (5.2). The used values are Input parameters $m=4, R_{0}=1, Q_{\mathrm{c}}=0.02 \AA^{-1}, \alpha=6.49 \AA, W=1 / 300 \AA^{-1}$.

Name	Unit	Description	Default
reflect	str	Reflectivity file name. Format [q(Angs-1) R(0-1)]	0
w1	m	Width at the guide entry	
h1	m	Height at the guide entry	
w2	m	Width at the guide exit	
h2	m	Height at the guide exit	
1	m	length of guide	
R0	1	Low-angle reflectivity	0.99
Qc	AA-1	Critical scattering vector	0.0219
alpha	AA	Slope of reflectivity	6.07
m	1	m -value of material. Zero means completely absorbing.	2
w	AA-1	Width of supermirror cut-off	0.003

Scroll to the top of the window and locate the DEFINE INSTRUMENT Test(Par1=1)
line. Define an input parameter called M, with a default value of 1

Scroll to the top of the window and locate the DEFINE INSTRUMENT Test(Par1=1)
line. Define an input parameter called M , with a default value of 1

$\left.\right|^{\text {Risø DTU DTU }}$

Insert a PSD monitor of dimension $0.07 \times 0.07 \mathrm{~m}$, define an output filename, AT ($0,0,20.01$) RELATIVE Guide

Insert a Divergence monitor of dimension $0.07 \times 0.07 \mathrm{~m}$, define an output filename, maximum divergence 5 degrees in both directions. To be placed AT $(0,0,0.01)$ RELATIVE PREVIOUS

Press save
Go on the main window, press run, you should now get....

Insert a PSD monitor of dimension $0.07 \times 0.07 \mathrm{~m}$, define an output filename, AT $(0,0,20.01)$ RELATIVE Guide

Select the 'TRACE' mode and press Start - you will get a view of the instrument. Try zooming (place cursor, press z, drag, click)

Ex. 1 / Peter Willendrup คกาil $31^{\text {Riss oru }} \underset{\text { 0TU }}{\Xi}$

Right-click to unzooom.
Click a few times and see the visualization of neutron rays

Press ' q ' to exit the visualisation, close the window.
Press run again and choose simulate mode, start Once the simulation terminates, press Plot and you will get...

Ex. 1 / Peter Willendrup กmi $31^{\text {ssonoum }}$

Press ' q ' to exit the visualisation, close the window.
Press run again and choose simulate mode, start
Once the simulation terminates, press Plot and you will get...

Ex. 1 / Peter Willendrup
ess

Clicking one of the panels will zoom that monitor, clicking again zoom out
Shortcut keys:
Click on a plot for full-window view.
Press key for hardcopy (in graphics window), 'Q' to quit
'P' BW postscript
'C' color postscript
'N' PNG file
'M' PPM file
'G' GIF file
'L' Toggle log 10 plotting mode
'T' Toggle contour plotting mode
'Q' quit

A report of integrated intensity of the monitors, as fct. of the scanned variable

Try using the Tools - Plot other results to compare the individual scan steps (browse to Scan/0, Scan/3, ...)

Try using the Tools - Plot other results to compare the individual scan steps (browse to Scan/0, Scan/3, ...)

